Advice from the Expert, Best Practices in Utilizing Storage Pools

High Capacity Disks, Storage facility, Storage facilities, Cloud storage, Storage pool, Storage racks, Cheap storage, What is cloud, Computing storage management, Network storage, Rack mount, Storage unit, Vmware, Vmware performance monitoring, Vmware monitoring, Vmware backup, Sto-rage, Storage in

Storage Pools for the CX4 and VNX have been around a while now, but I continue to still see a lot of people doing things that are against best practices. First, let’s start out talking about RAID Groups.

Traditionally to present storage to a host you would create a RAID Group which consisted of up to 16 disks, the most typical used RAID Groups were R1/0, R5, R6, and Hot Spare. After creating your RAID Group you would need to create a LUN on that RAID Group to present to a host.

Let’s say you have 50 600GB 15K disks that you want to create RAID Groups on, you could create (10) R5 4+1 RAID Groups. If you wanted to have (10) 1TB LUNs for your hosts you could create a 1TB LUN on each RAID Group, and then each LUN has the guaranteed performance of 5 15K disks behind it, but at the same time, each LUN has at max the performance of 5 15K disks.
[framed_box bgColor=”#F0F0F0″ textColor=”undefined” rounded=”true”] What if your LUNs require even more performance?

1. Create metaLUNs to keep it easy and effective.

2. Make (10) 102.4GB LUNs on each RAID Group, totaling (100) 102.4GB LUNs for your (10) RAID Groups.

3. Select the meta head from a RAID Group and expand it by striping it with (9) of the other LUNs from other RAID Groups.

4. For each of the other LUNs to expand you would want to select the meta head from a different RAID Group and then expand with the LUNs from the remaining RAID Groups.

5. That would then provide each LUN with the ability to have the performance of (50) 15K drives shared between them.

6. Once you have your LUNs created, you also have the option of turning FAST Cache (if configured) on or off at the LUN level.

Depending on your performance requirement, things can quickly get complicated using traditional RAID Groups.

This is where CX4 and VNX Pools come into play.
[/framed_box] EMC took the typical RAID Group types – R1/0, R5, and R6 and made it so you can use them in Storage Pools. The chart below shows the different options for the Storage Pools. The asterisks notes that the 8+1 option for R5 and the 14+2 option for R6 are only available in the VNX OE 32 release.

High Capacity Disks, Storage facility, Storage facilities, Cloud storage, Storage pool, Storage racks, Cheap storage, What is cloud, Computing storage management, Network storage, Rack mount, Storage unit, Vmware, Vmware performance monitoring, Vmware monitoring, Vmware backup, Sto-rage, Storage inNow on top of that you can have a Homogeneous Storage Pool – a Pool with only like drives, either all Flash, SAS, or NLSAS (SATA on CX4), or a Heterogeneous Storage Pool – a Storage Pool with more than one tier of storage.

If we take our example of having (50) 15K disks using R5 for RAID Groups and we apply them to pools we could just create (1) R5 4+1 Storage Pool with all (50) drives in it. This would then leave us with a Homogeneous Storage Pool, visualized below.High Capacity Disks, Storage facility, Storage facilities, Cloud storage, Storage pool, Storage racks, Cheap storage, What is cloud, Computing storage management, Network storage, Rack mount, Storage unit, Vmware, Vmware performance monitoring, Vmware monitoring, Vmware backup, Sto-rage, Storage in

The chart to the right displays what will happen underneath the Pool as it will create the same structure as the traditional RAID Groups. We would end up with a Pool that contained (10) R5 4+1 RAID Groups underneath that you wouldn’t see, you would only see the (1) Pool with the combined storage of the (50) drives. From there you would create your (10) 1TB LUNs on the pool and it will spread the LUNs across all of the RAID Groups underneath automatically. It does this by creating 1GB chunks and spreading them across the hidden RAID Groups evenly. Also you could turn FAST Cache on or off at the Storage Pool level (if configured).

On top of that, the other advantage to using a Storage Pool is the ability to create a Heterogeneous Storage Pool, which allows you to have multiple tiers where the ‘hot’ data will move up to the faster drives and the ‘cold’ data will move down to the slower drives.

Jon Blog photo 4Another thing that can be done with a Storage Pool is create thin LUNs. The only real advantage of thin LUNs is to be able to over provision the Storage Pool. For example if your Storage Pool has 10TB worth of space available, you could create 30TB worth of LUNs and your hosts would think they have 30TB available to them, when in reality you only have 10TB worth of disks.

The problem with this is when the hosts think they have more space than they really do and when the Storage Pool starts to get full, there is the potential to run out of space and have hosts crash. They may not crash but it’s safer to assume that they will crash or data will become corrupt because when a host tries to write data because it thinks it has space, but really doesn’t, something bad will happen.

In my experience, people typically want to use thin LUNs only for VMware yet will also make the Virtual Machine disk thin as well. There is no real point in doing this. Creating a thin VM on a thin LUN will grant no additional space savings, just additional overhead for performance as there is a performance hit when using thin LUNs.

High Capacity Disks, Storage facility, Storage facilities, Cloud storage, Storage pool, Storage racks, Cheap storage, What is cloud, Computing storage management, Network storage, Rack mount, Storage unit, Vmware, Vmware performance monitoring, Vmware monitoring, Vmware backup, Sto-rage, Storage inAfter the long intro to how Storage Pools work (and it was just a basic introduction, I left out quite a bit and could’ve gone over in detail) we get to the part of what to do and what not to do.

Creating Storage Pools

Choose the correct RAID Type for your tiers. At a high level – R1/0 is for high write intensive applications, R5 is high read, and R6 is typically used on large NLSAS or SATA drives and highly recommended to use on those drive types due to the long rebuild times associated with those drives.

Use the number of drives in the preferred drive count options. This isn’t always the case as there are ways to manipulate how the RAID Groups underneath are created but as a best practice use that number of drives.

Keep in mind the size of your Storage Pool. If you have FAST Cache turned on for a very large Storage Pool and not a lot of FAST Cache, it is possible the FAST Cache will be used very ineffectively and be inefficient.

If there is a disaster, the larger your Storage Pool the more data you can lose. For example, if one of the RAID Groups underneath having a dual drive fault if R5, a triple drive fault in R6, or the right (2) disks in R1/0.

Expanding Storage Pools

Use the number of drives in the preferred drive count options. If it is on a CX4 or a VNX that is pre VNX OE 32, the best practice is to expand by the same number of drives in the tier that you are expanding as the data will not relocate within the same tier. If it is a VNX on at least OE 32, you don’t need to double the size of the pool as the Storage Pool has the ability to relocate data within the same tier of storage, not just up and down tiers.

Be sure to use the same drive speed and size for the tier you are expanding. For example, if you have a Storage Pool with 15K 600GB SAS drives, you don’t want to expand it with 10K 600GB SAS drives as they will be in the same tier and you won’t get consistent performance across that specific tier. This would go for creating Storage Pools as well.

Graphics by EMC